Supporting information ## Water-based synthesis of ultrasmall nanoparticles of platinum group metal oxides (1.8 nm) Oliver Wetzel,¹ Oleg Prymak,¹ Kateryna Loza,¹ Nina Gumbiowski,¹ Marc Heggen,² Peter Bayer,³ Christine Beuck,³ Claudia Weidenthaler,⁴ and Matthias Epple¹* ¹ Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany ² Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³ Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany ⁴ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany ^{*} Corresponding author. e-mail: matthias.epple@uni-due.de **Figure S1:** ¹H-¹H-COSY NMR spectra of glutathione-coated metal oxide nanoparticles. Note that the spectrum was recorded with suppression of the water signal. The ¹H-¹H-COSY NMR shows the correlation signals of the spin-spin coupling for ¹H cores separated by three bonds (³J coupling). **Figure S2:** ¹H-¹³C-HSQC NMR spectra of glutathione-coated metal oxide nanoparticles show correlations between covalently bound carbon and hydrogen atoms. **Figure S3:** ¹H-¹³C-HMBC NMR spectra of glutathione-coated metal oxide nanoparticles. Aliphatic region (**left**) and correlation of the CH-protons to the carbonyl groups (**right**). The HMBC NMR spectra show correlations between protons and carbons separated by 1 to 3 bonds. The spectra for iridium and palladium did not show any kind of correlation.